skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Büntgen, Ulf"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Common Era temperature variability has been a prominent component in Intergovernmental Panel on Climate Change reports over the last several decades and was twice featured in their Summary for Policymakers. A single reconstruction of mean Northern Hemisphere temperature variability was first highlighted in the 2001 Summary for Policymakers, despite other estimates that existed at the time. Subsequent reports assessed many large-scale temperature reconstructions, but the entirety of Common Era temperature history in the most recent Sixth Assessment Report of the Intergovernmental Panel on Climate Change was restricted to a single estimate of mean annual global temperatures. We argue that this focus on a single reconstruction is an insufficient summary of our understanding of temperature variability over the Common Era. We provide a complementary perspective by offering an alternative assessment of the state of our understanding in high-resolution paleoclimatology for the Common Era and call for future reports to present a more accurate and comprehensive assessment of our knowledge about this important period of human and climate history. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Hydrological summer extremes represent a prominent natural hazard in Central Europe. River low flows constrain transport and water supply for agriculture, industry and society, and flood events are known to cause material damage and human loss. However, understanding changes in the frequency and magnitude of hydrological extremes is associated with great uncertainty due to the limited number of gauge observations. Here, we compile a tree-ring network to reconstruct the July–September baseflow variability of the Morava River from 1745 to 2018 CE. An ensemble of reconstructions was produced to assess the impact of calibration period length and trend on the long-term mean of reconstruction estimates. The final estimates represent the first baseflow reconstruction based on tree rings from the European continent. Simulated flows and historical documentation provide quantitative and qualitative validation of estimates prior to the 20th century. The reconstructions indicate an increased variability of warm-season flow during the past 100 years, with the most extreme high and low flows occurring after the start of instrumental observations. When analyzing the entire reconstruction, the negative trend in baseflow displayed by gauges across the basin after 1960 is not unprecedented. We conjecture that even lower flows could likely occur in the future considering that pre-instrumental trends were not primarily driven by rising temperature (and the evaporative demand) in contrast to the recent trends. 
    more » « less
  3. null (Ed.)
    Abstract Tree-ring chronologies underpin the majority of annually-resolved reconstructions of Common Era climate. However, they are derived using different datasets and techniques, the ramifications of which have hitherto been little explored. Here, we report the results of a double-blind experiment that yielded 15 Northern Hemisphere summer temperature reconstructions from a common network of regional tree-ring width datasets. Taken together as an ensemble, the Common Era reconstruction mean correlates with instrumental temperatures from 1794–2016 CE at 0.79 ( p  < 0.001), reveals summer cooling in the years following large volcanic eruptions, and exhibits strong warming since the 1980s. Differing in their mean, variance, amplitude, sensitivity, and persistence, the ensemble members demonstrate the influence of subjectivity in the reconstruction process. We therefore recommend the routine use of ensemble reconstruction approaches to provide a more consensual picture of past climate variability. 
    more » « less
  4. ABSTRACT Radiocarbon (14C) ages cannot provide absolutely dated chronologies for archaeological or paleoenvironmental studies directly but must be converted to calendar age equivalents using a calibration curve compensating for fluctuations in atmospheric 14C concentration. Although calibration curves are constructed from independently dated archives, they invariably require revision as new data become available and our understanding of the Earth system improves. In this volume the international 14C calibration curves for both the Northern and Southern Hemispheres, as well as for the ocean surface layer, have been updated to include a wealth of new data and extended to 55,000 cal BP. Based on tree rings, IntCal20 now extends as a fully atmospheric record to ca. 13,900 cal BP. For the older part of the timescale, IntCal20 comprises statistically integrated evidence from floating tree-ring chronologies, lacustrine and marine sediments, speleothems, and corals. We utilized improved evaluation of the timescales and location variable 14C offsets from the atmosphere (reservoir age, dead carbon fraction) for each dataset. New statistical methods have refined the structure of the calibration curves while maintaining a robust treatment of uncertainties in the 14C ages, the calendar ages and other corrections. The inclusion of modeled marine reservoir ages derived from a three-dimensional ocean circulation model has allowed us to apply more appropriate reservoir corrections to the marine 14C data rather than the previous use of constant regional offsets from the atmosphere. Here we provide an overview of the new and revised datasets and the associated methods used for the construction of the IntCal20 curve and explore potential regional offsets for tree-ring data. We discuss the main differences with respect to the previous calibration curve, IntCal13, and some of the implications for archaeology and geosciences ranging from the recent past to the time of the extinction of the Neanderthals. 
    more » « less
  5. Abstract AimPrevious work demonstrated the global variability of synchrony in tree growth within populations, that is, the covariance of the year‐to‐year variability in growth of individual neighbouring trees. However, there is a lack of knowledge about the causes of this variability and its trajectories through time. Here, we examine whether climate can explain variation in within‐population synchrony (WPS) across space but also through time and we develop models capable of explaining this variation. These models can be applied to the global tree cover under current and future climate change scenarios. LocationGlobal. Time period1901–2012. Major taxa studiedTrees. MethodsWe estimated WPS values from a global tree‐ring width database consisting of annual growth increment measurements from multiple trees at 3,579 sites. We used generalized linear mixed effects models to infer the drivers of WPS variability and temporal trends of global WPS. We then predicted WPS values across the global extent of tree cover. Finally, we applied our model to predict future WPS based on the RCP 8.5 (2045–2065 period) emission scenario. ResultsAreas with the highest WPS are characterized by a combination of environments with both high mean annual temperature (>10°C) and low precipitation (<300 mm). Average WPS across all temperate forests has decreased historically and will continue to decrease. Potential implications of these patterns include changes in forest dynamics, such as higher tree growth and productivity and an increase in carbon sequestration. In contrast, the WPS of tropical forests of Central and South America will increase in the near future owing to reduced annual precipitation. Main conclusionsClimate explains WPS variability in space and time. We suggest that WPS might have value as an integrative ecological measure of the level of environmental stress to which forests are subjected and therefore holds potential for diagnosing effects of global climate change on tree growth. 
    more » « less